Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Brain Behav Immun ; 118: 380-397, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38485064

RESUMEN

Autoantibodies directed against the GluA3 subunit (anti-GluA3 hIgGs) of AMPA receptors have been identified in 20%-25% of patients with frontotemporal lobar degeneration (FTLD). Data from patients and in vitro/ex vivo pre-clinical studies indicate that anti-GluA3 hIgGs negatively affect glutamatergic neurotransmission. However, whether and how the chronic presence of anti-GluA3 hIgGs triggers synaptic dysfunctions and the appearance of FTLD-related neuropathological and behavioural signature has not been clarified yet. To address this question, we developed and characterized a pre-clinical mouse model of passive immunization with anti-GluA3 hIgGs purified from patients. In parallel, we clinically compared FTLD patients who were positive for anti-GluA3 hIgGs to negative ones. Clinical data showed that the presence of anti-GluA3 hIgGs defined a subgroup of patients with distinct clinical features. In the preclinical model, anti-GluA3 hIgGs administration led to accumulation of phospho-tau in the postsynaptic fraction and dendritic spine loss in the prefrontal cortex. Remarkably, the preclinical model exhibited behavioural disturbances that mostly reflected the deficits proper of patients positive for anti-GluA3 hIgGs. Of note, anti-GluA3 hIgGs-mediated alterations were rescued in the animal model by enhancing glutamatergic neurotransmission with a positive allosteric modulator of AMPA receptors. Overall, our study clarified the contribution of anti-GluA3 autoantibodies to central nervous system symptoms and pathology and identified a specific subgroup of FTLD patients. Our findings will be instrumental in the development of a therapeutic personalised medicine strategy for patients positive for anti-GluA3 hIgGs.


Asunto(s)
Autoanticuerpos , Degeneración Lobar Frontotemporal , Animales , Humanos , Ratones , Autoanticuerpos/metabolismo , Demencia Frontotemporal , Degeneración Lobar Frontotemporal/metabolismo , Degeneración Lobar Frontotemporal/patología , Receptores AMPA , Transmisión Sináptica , Proteínas tau/metabolismo
2.
Nat Neurosci ; 25(11): 1505-1518, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36280797

RESUMEN

Decisions that favor one's own interest versus the interest of another individual depend on context and the relationships between individuals. The neurobiology underlying selfish choices or choices that benefit others is not understood. We developed a two-choice social decision-making task in which mice can decide whether to share a reward with their conspecifics. Preference for altruistic choices was modulated by familiarity, sex, social contact, hunger, hierarchical status and emotional state matching. Fiber photometry recordings and chemogenetic manipulations demonstrated that basolateral amygdala (BLA) neurons are involved in the establishment of prosocial decisions. In particular, BLA neurons projecting to the prelimbic (PL) region of the prefrontal cortex mediated the development of a preference for altruistic choices, whereas PL projections to the BLA modulated self-interest motives for decision-making. This provides a neurobiological model of altruistic and selfish choices with relevance to pathologies associated with dysfunctions in social decision-making.


Asunto(s)
Amígdala del Cerebelo , Complejo Nuclear Basolateral , Animales , Ratones , Vías Nerviosas/fisiología , Amígdala del Cerebelo/fisiología , Complejo Nuclear Basolateral/fisiología , Corteza Prefrontal/fisiología , Recompensa
3.
Front Mol Neurosci ; 15: 1061934, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36618824

RESUMEN

Social decision-making requires the ability to balance both the interests of the self and the interests of others to survive in social environments. Empathy is essential to the regulation of this type of interaction, and it often sustains relevant prosocial behaviors such as altruism and helping behavior. In the last decade, our capacity to assess affective and empathy-like behaviors in rodents has expanded our understanding of the neurobiological substrates that underly social decision-making processes such as prosocial behaviors. Within this context, oxytocinergic transmission is profoundly implicated in modulating some of the major components of social decision-making. Thus, this review will present evidence of the association between oxytocin and empathy-like and prosocial behaviors in nonhuman animals. Then, we will dissect the involvement of oxytocinergic transmission-across different brain regions and pathways-in some of the key elements of social decision-making such as emotional discrimination, social recognition, emotional contagion, social dominance, and social memory. Evidence of the modulatory role of oxytocin on social decision-making has raised considerable interest in its clinical relevance, therefore we will also discuss the controversial findings on intranasal oxytocin administration.

4.
Brain Behav Immun ; 97: 89-101, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34246733

RESUMEN

Autoantibodies targeting the GluA3 subunit of AMPA receptors (AMPARs) have been found in patients with Rasmussen's encephalitis and different types of epilepsy and were associated with the presence of learning and attention deficits. Our group recently identified the presence of anti-GluA3 immunoglobulin G (IgG) in about 25% of patients with frontotemporal dementia (FTD), thus suggesting a novel pathogenetic role also in chronic neurodegenerative diseases. However, the in vivo behavioral, molecular and morphological effects induced these antibodies are still unexplored. We injected anti-GluA3 IgG purified from the serum of FTD patients, or control IgG, in mice by intracerebroventricular infusion. Biochemical analyses showed a reduction of synaptic levels of GluA3-containing AMPARs in the prefrontal cortex (PFC), and not in the hippocampus. Accordingly, animals injected with anti-GluA3 IgG showed significant changes in recognition memory and impairments in social behavior and in social cognitive functions. As visualized by confocal imaging, functional outcomes were paralleled by profound alterations of dendritic spine morphology in the PFC. All observed behavioral, molecular and morphological alterations were transient and not detected 10-14 days from anti-GluA3 IgG injection. Overall, our in vivo preclinical data provide novel insights into autoimmune encephalitis associated with anti-GluA3 IgG and indicate an additional pathological mechanism affecting the excitatory synapses in FTD patients carrying anti-GluA3 IgG that could contribute to clinical symptoms.


Asunto(s)
Autoanticuerpos , Receptores AMPA , Animales , Espinas Dendríticas/metabolismo , Hipocampo/metabolismo , Humanos , Ratones , Receptores AMPA/metabolismo , Sinapsis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...